
A Declarative Approach to Automated Configuration
John A. Hewson

School of Informatics
University of Edinburgh
john.hewson@ed.ac.uk

Paul Anderson
School of Informatics

University of Edinburgh
dcspaul@ed.ac.uk

Andrew D. Gordon
Microsoft Research &
School of Informatics

University of Edinburgh
adg@microsoft.com

Abstract

System administrators increasingly use declarative,
object-oriented languages to configure their systems.
Extending such systems with automated analysis and
decision making is an area of active research. We in-
troduce ConfSolve, an object-oriented declarative con-
figuration language, in which logical constraints over a
system can be specified. Verification, impact analysis
or even the generation of valid configurations can then
be performed, by translation to a Constraint Satisfaction
Problem (CSP), which is solved with an off-the-shelf
solver. We present a full definition of our language and
its compilation process, and show that our implementa-
tion outperforms previous work utilising an SMT solver,
while adding new features such as optimisation.

Keywords
configuration management, automation, constraints

1 Introduction
Configuration of large computing installations is in-
creasingly performed by automated tools which make
use of declarative, object-oriented languages [1, 2, 3].
These tools replace low-level scripts which describe the
steps needed to achieve a given system state, with a
high-level declarative model of the goal state of the sys-
tem. Such tools can be used to configure workstations,
servers, or network hardware, and have proven popular
among administrators of large or complex sites.

However, such tools do not facilitate automated analy-
ses, such as checking that a configuration is valid, or as-
signing values automatically given a set of constraints:
instead it is left to the administrator to decide which
configurations are possible. Indeed, this predominantly
manual process is often subject to inefficiencies and er-
rors [4].

There is a need for a general-purpose system con-
figuration language which can be used to model a
broad range of configuration problems involving com-
plex declarative constraints, in an easy-to-use manner.
Such a tool could be used to make or help make better
decisions, in a number of possible scenarios:

1. Verification of a system configuration according to
some model.

2. Impact-analysis of configuration changes.
3. Generating valid configurations from a model.
4. Optimising a configuration according to a model.

There has been recent interest in configuration tools
which, given a model of a system, are able to per-
form analyses to aid the system administrator. Re-
cent research into such systems has made use of off-
the-shelf boolean satisfiability (SAT) solvers [5, 6] and
constraint-logic-programming (CLP) systems [3]. These
approaches are promising, but there still remains a need
for a rigorously defined high-level modelling language
which supports constraints, and provides sufficient ex-
pressivity to be of use in system configuration, while
scaling to problems of a practical size.

We believe the constraint programming (CP) is a nat-
ural candidate for modelling and solving such problems.
In this paper we present ConfSolve, a system configura-
tion language, in which constraints over valid solutions
may be specified, and valid concrete configurations may
be either validated or generated via a constraint satis-
faction problem (CSP) solver. ConfSolve aims to be a
language general enough to describe a large range of
configuration problems in a manner natural to a system
administrator, without requiring expertise in a constraint
modelling language, or expert help to construct models.

Contributions of the paper
1. Define a constraint-based object-oriented configu-

ration language.
2. Define the translation of the language to a CSP (en-

coded in MiniZinc [7]).
3. Show that translated models can scale to problems

of a useful size.
4. Demonstrate that the language can be used to

model problems identified in previous work based
on SMT, and scale to significantly larger problems.

Structure of the paper
The remainder of this paper is structured as follows: We
introduce the ConfSolve language by means of example,

john.hewson@ed.ac.uk
dcspaul@ed.ac.uk
adg@microsoft.com

give an overview of the MiniZinc constraint language,
present the abstract grammar of ConfSolve, describe its
type system, and describe a method for its transforma-
tion into MiniZinc. Finally, we provide experimental re-
sults demonstrating that our method outperforms previ-
ous work, before discussing the implications and direc-
tions for future work.

2 Modelling with ConfSolve
ConfSolve provides the user with an object-oriented
declarative language, with a Java-like syntax, which ad-
heres to several key principles:

1. Order never matters. Declaration and usage can oc-
cur in any order with no difference in meaning.

2. Everything is an expression, except declarations.
3. All classes are equal: there are no built-in classes

with special meanings such as Machine or File.

Variables and Classes: A ConfSolve model consists
of a global scope in which strongly-typed variables,
classes, and enumerations may be declared. For exam-
ple, a simple machine may be defined as:

enum OperatingSystem { Windows, UNIX, OSX }

class Machine {
var os as OperatingSystem;
var cpus as 1..4;
var memory as int;

}

var m0 as Machine;

In which m0 is a Machine object in the global scope, with
members os, an enumeration; cpus, an integer subrange;
and memory, an unbounded integer.

Member variables may also declare objects, allowing
the nesting of child objects within a parent object. For
example, we could add a network interface to the ma-
chine definition:

class Machine {
...
var en0 as NetworkInterface;

}

class NetworkInterface {
var subnet as 0..3;

}

An instance of NetworkInterface will be created when-
ever a Machine is instantiated. The lifetime of the Net-
workInterface instance is tied to that of its parent ob-
ject, and is not shared between different instances of Ma-
chine.

Inheritance: Objects support classical single inheri-
tance via abstract classes. For example, we declare a
class model machine-roles, with specialised subclasses
for web servers:

abstract class Role {
var machine as ref Machine;

}

class WebServer extends Role {
var port as 0..65535;

}

References: Associations between objects are mod-
elled using reference types. References are handles to
objects elsewhere in the model, which cannot be null.
Consider an instance of the web server role:

var ws1 as WebServer;

In the previous declaration of the Role class, the variable
machine was declared as a Machine reference. Thus w1
contains a reference to a machine, in this case it will
refer to m0, as it is the only machine we have so far de-
clared. The solver will automatically assign the value of
a reference to any instance of the appropriate type, so if
we always wanted ws1 to run on m1 we would also need
to write:

ws1.machine = m1;

Which is an example of an equality constraint.

Constraints: Constraints are expressions which must
hold in any solution to the model. For example, intro-
ducing a database-server role which can be either a slave
or master, and must be peered with another slave or mas-
ter, as appropriate:

enum DatabaseRole { Master, Slave }

class DatabaseServer extends Role {
var role as DatabaseRole;

// slave or master
var peer as ref DatabaseServer;

// the peer cannot be itself
peer != this;

// a master’s peer must be a slave,
// and a slave’s peer must be a master
role != peer.role;

}

This allow us to define two database server roles:

var masterDB as DatabaseServer;
masterDB.role = DatabaseRole.Master;
masterDB.peer = slaveDB;

var slaveDB as DatabaseServer;
slaveDB.role = DatabaseRole.Slave;
slaveDB.peer = masterDB;

Likewise we may define logical boot-disks on a SAN
for each physical machine, and assign logical boot-disks
to the two roles:

var db_disk as LogicalDisk;
db_disk.capacityGB = 2048;

var web_disk as LogicalDisk;
web_disk.capacityGB = 10;

Udating the declarations of Machine, WebServer and
DatabaseServer with:

class Machine {
...
var bootDisk as ref LogicalDisk;

}

class WebServer extends Role {
...
machine.bootDisk = web_disk;

}

class DatabaseServer extends Role {
...
machine.bootDisk = db_disk;

}

Sets and Quantifiers: Sets of variables may be de-
clared, for example 10 web servers:

var webServers as WebServer[10];

A quantified constraint over the members of
webServers can ensure that each server’s port is
set to 80, as long as the role is not running on m0:

forall ws in webServers where ws.machine != m0 {
ws.port = 80;

};

As the port of m0 is not constrained, the solver is free to
choose its value. Should we want to specify it ourselves,
we could write:

m0.port = 443;

So far our model contains only one Machine, m0, let’s
declare a class to describe a rack of 24 machines:

class Rack {
var machines as Machine[24];

}

var r1 as Rack;
var r2 as Rack;

Here machines is declared as a set of objects, 24 new
instances of Machine will be created as children of each
Rack instance, in this case r1.

Given the following constraints, which place the mas-
ter and slave databases in different racks:

masterDB.machine in r1;
slaveDB.machine in r2;

If rack r2 fails, is there a valid solution? The answer is
clearly no, and we can perform a quick impact analysis
of such a failure by simply commenting out r2. Alterna-
tively we could modify the definition of a Role to be:

abstract class Role {
var machine as ref Machine;
machine in r2.machines = false;

}

In either case ConfSolve will report that there is no valid
solution to the model.

Optimisation Minimisation and maximisation con-
straints may be used for any solver-populated variable.
The solver will find not just a valid value, but an opti-
mal value, given some expression to be maximised or
minimised. For example, if we prefer database masters
and slaves to be in different racks, but this is not a hard
constraint, then we can remove the constraints:

masterDB.machine in r1;
slaveDB.machine in r2;

Replacing them with a constraint maximising the num-
ber of machines with peers on different racks:

var databases as ref DatabaseServer[2];
var racks as ref Rack[2];

maximize sum r in racks {
count (db in databases

where db.machine in r.machines
!= db.peer.machine in r.machines);

};

Output The final output of the ConfSolve compiler,
once solving is complete, is an object-tree in a format
similar to the popular JSON (JavaScript Object Nota-
tion) format, which we call CSON (ConfSolve Output
Notation). We describe CSON in full in Section 6.3. For
example, the CSON corresponding to a model contain-
ing only m0 is as follows:

{
m0: Machine {

os: OperatingSystem.UNIX,
cpus: int 4,
memory: int 1024,
en0: NetworkInterface {
subnet: 0,

},
bootDisk: ref LogicalDisk web_disk,

},
web_disk: LogicalDisk {

capacityGB: int 10,
},

}

3 Core Syntax of ConfSolve
This section describes the abstract grammar of
ConfSolve, which is independent of the concrete gram-
mar which we chose for our implementation, and does
not include concrete syntax such as semicolons, com-
ments, or whitespace rules. This provides a concise de-
scription of the language, free from unnecessary detail.
It also allows others to use their own concrete syntax, but
adopt the ConfSolve abstract syntax tree (AST) in order
to apply the same translation steps to target MiniZinc.

To avoid redundancy, we first define a minimal core
language, and then a series of derived constructs which
are defined in terms of the core language.

Syntax of Types:

S ::= {i1, . . . , in} integer subset
T ::= type

bool boolean
int integer
S integer subset
u enumeration
c object
T [] set of T
c [n] set of objects, with cardinality n

Identifiers are represented by metavariables: c is a
class name, v is a variable name, u is an enum name,
ai is an enum member, l is a field name; i, m and n are
integers; and b is a boolean: true or false.

A ConfSolve type is either a boolean, and unbounded
integer, an finite subset of integers, an enumeration, and
object, a set of any of those, or a set of objects with a
fixed cardinality. Nesting of set types is not supported,
as there is no direct way to represent sets of sets in
MiniZinc, however an object may contain a set field,
which may itself contain objects, giving the user the
means to model arbitrary nesting via objects. Variable

declarations may not be of type c[], which is reserved
for use during type checking (see section 4).

Integers are the only unbounded type in ConfSolve, as
is the case in MiniZinc. Consequently a set of int can-
not be declared, a restriction which we formally impose
when we describe the type system in section 4. This re-
striction stems from the fact that quantifiers are unrolled
as part of the MiniZinc to FlatZinc compilation process,
which is not possible when the domain of the quanti-
fier is infinite. As it is usually undesirable to have un-
bounded models, it is worth observing that the benefit of
the int type is that it allows constants whose domain is
not known to be declared and assigned separately. Thus
one can define var id as int and later write the constraint
id = 4. It also allows the user to avoid having to specify
the domain of functionally defined variable values which
ultimately depend on only variables with finite domains,
for example the domain of x = 5 ∗ y+ 3, where y is a
constant defined elsewhere.

To reduce the complexity of the MiniZinc encoding,
sets of objects c[n] have the same upper and lower bound
n on their cardinality. As an alternative, the user may in-
stead use a fixed cardinality set of objects, and a variable
cardinality set of references with a constraint that the lat-
ter must be resolved to only members of the former. The
derived expressions in Section 3.1 address the declara-
tion of such fixed-cardinality sets.

Syntax of Expressions:

e ::= expression
this current object
v variable
e.l field access
u.a enum member
e.size set cardinality
e1 BinOp e2 binary operator
Fold (v in e1 where e2) (e3) fold
bool2int(e) cast bool to int
-e negation
!e logical not
[e1, . . . ,en] set literal
b boolean literal
i integer literal
(e) parenthesis

Fold ::= fold operator
forall | exists quantification
sum summation

Variables, constants, binary and unary operators, and
parenthetical expressions are defined in the standard
manner. Object field access e.l evaluates to the field l of

object e. Enum constants are written in a fully-qualified
manner as u.a, where u is the name of the enumeration
and a is a constituent member. The current object can
be accessed via this within the body of a ClassDecl. For
expressions with set-type, e.size evaluates to the cardi-
nality of the set given by e. Three folds over sets are de-
fined: universal quantification, forall, existential quan-
tification, exists, and summation, sum. Folds include
a where expression which filters the set prior to evalu-
ating the fold. Finally, the function bool2int provides
type-casting between boolean and integer types.

Binary Operators:

BinOp ::= binary operator
= | > | >= | < | <= | in | subset relational
union | intersection set
&& | || | -> | <-> logical
+ | - | / | * | ˆ |mod arithmetic

Relational operators use the standard C-like notation,
with the addition of in which is the set membership oper-
ator ∈, and subset which is the subset operator ⊂. Log-
ical operators are and, or, implies, and biconditional.
Arithmetic operators are standard, where ˆ is exponenti-
ation, and mod is modulo.

Syntax of Models:

Model ::= model
Declaration* declarations

Declaration ::= declaration
ClassDecl class decl.
EnumDecl enum decl.
VarDecl var decl.
Constraint constraint

ClassDecl ::= class decl.
abstract? class c extends c′ {
(VarDecl | Constraint)*
}

EnumDecl ::= enum decl.
enum u {a1, . . . ,an}

VarDecl ::= variable decl.
var v as T
var v as ref c object reference

Constraint ::= constraint
e hard constraint
maximize e soft constraint

Identifiers are represented by metavariables: c is a
class name, v is a variable name, u is an enum name,
ai is an enum member, l is a field name; i, m and n are
integers.

A model consists of a series of declarations, of either
classes, enumerations, variables, or constraints. A class
declaration may contain any number of nested variable
or constraint declarations, and it may extend another
class.

A declaration class c extends c′ is well-formed if and
only if, there is a well-formed class declaration for c′

and the inheritance hierarchy is acyclic, or if c′ is the
top class, denoted by the distinguished name ∅. A well-
formed class may contain duplicate field names.

Enumerations consist of a name and a non-empty a
set of identifiers, which defines its members. Variables
are always declared with a type T . Object reference vari-
ables may be declared using var v as ref c. This creates a
reference which will resolve at solve-time to an instance
of c elsewhere in the model, whereas the declaration var
v as c allocates a new instance of c.

3.1 Derived Syntax
The grammar above describes the core of the ConfSolve
language. The full language contains a number of con-
structs which are derived from the core language, to keep
the core and its translation as simple as possible. These
syntactic re-write rules are performed by the parser in
our implementation. The relation , means "equal by
definition".

Derived Declarations:

class c { (VarDecl | Constraint)* } ,
class c extends ∅ { (VarDecl | Constraint)* }

var v as m .. n ,
var v as {x | x ∈ N, x≥ m∧ x≤ n}

var v as T [m .. n] ,
var v as T []
v.size >= m && v.size <= n

minimize e , maximize −e

Classes without a base type extend the top class, de-
noted by the distinguished name ∅. Integer subsets may
be declared as ranges. Variable cardinality sets are given
a shorthand notation. Minimisation is defined as negated
maximisation.

Derived Expressions:

Fold (x in e1) (e2) ,
Fold (x in e1 where true) (e2)

count (x in e1 where e2) ,
sum (x in e1 where e2) (1)

count (x in e1) ,
count (x in e1 where true)

e1! = e2 , !(e1 = e2)

{e1; . . . ;en}, (e1∧·· ·∧ en)

Quantifiers without filters are defined as having an
always-true filter. The body of a forall expression is de-
fined as the logical conjunction of its sub-expressions.
The count expression is defined in terms of summation.
The “not equals” operator is defined as negated equal-
ity. Finally, a semicolon-delimited expression block is
defined as the conjunction of its sub-expressions.

4 Type System
From the information presented so far, we are able to
recognise a syntactically correct ConfSolve program.
However, not all syntactically correct ConfSolve pro-
grams are well-formed. For example, a program which
compares booleans with integers, declares a set of int,
or makes use of undeclared variables. To complete our
description of ConfSolve, it is necessary to describe its
type system.

Static typing serves two purposes, firstly to provide
a level of compile-time safety, and secondly to satisfy
the CSP solver’s requirement that a domain is specified
for each variable. The smaller the domain, the better
performance one can expect from the solver. This is why
the type 1..3 is more desirable than the type int.

We formally specify ConfSolve’s type system as a
proof system, which is a declarative specification of the
rules governing the assignment of types to expressions.
This is separate from the actual type checking algorithm
used in the ConfSolve compiler which implements these
rules.

Within a proof system types are assigned to expres-
sions via typing judgements, which are applied recur-
sively, and take the form:

(Name)
premises

conclusion

where premises may be written on multiple lines or sep-
arated with a space. Judgements which contain expres-
sions require a typing environment to resolve variable
names to their declared type, which is similar to the con-
cept of a symbol table, used when implementing such
systems.

Environments:

E ::= v1 : T1, . . . ,vn : Tn type environments
dom(v1 : T1, . . . ,vn : Tn) = environment domain

{v1, . . .vn}

We now begin the formal specification. Type system
judgements may be made with respect to a typing envi-
ronment E, of the form v1 : T1, . . . ,vn : Tn, which assigns

a type to each in-scope variable. We write ∅ for the ini-
tial environment with an empty map.

Typing Judgements:

E ` � environment E is well-formed
` T the type T is well-formed
T <: T ′ type T is a subtype of T ′

E ` e : T in E, expression e has type T

There are four judgements which we may make. That
an environment is well formed, that a type is well-
formed, that a type is a subtype of another, and that an
expression has a given type.

Rules of Well-Formed Environments and Types:
Where class c extends c′{ . . .} means that there exists
such a declaration. Likewise for enum u {ai

i∈1..n }.

(Env Empty)

∅ ` �

(Env Var)
E ` � ` T v /∈ dom(E)

E,v : T ` �

(Type Bool)

` bool

(Type Int)

` int

(Type Int Sub)

` S

(Type Enum)
enum u {ai

i∈1..n }
` u

(Type Obj)
c′ 6=∅ →` c′

class c extends c′ { . . .}
` c

(Type Set)
` T T 6= int
` T []

(Type Obj Set)
` c

` c[n]

A well-formed environment is either empty, or con-
tains a mapping of variable names to types. A well-
formed type is either a bool, and int, an enum, an integer
subset, an object, a set of any type other than int, or a set
of objects with a fixed cardinality. These rules and those
which follow make use of definitions introduced in the
syntax of types and expressions in section 3.

Rules of Subtyping

(Extends)
class c extends c′ {. . .}

c <: c′

(Reflex)
` T

T <: T

(Trans)
T <: T ′

T ′ <: T ′′

T <: T ′′

(Set Subtype)
T <: T ′

T []<: T ′[]

(Obj n-Set Subtype)
c <: c′

c[n]<: c′[n]

(Obj Set Subtype)
` c

c[n]<: c[]

(Int Sub)

S <: int

(Int Sub Union)

S <: S∪S′

Our rules of type assignment make heavy use of sub-
typing for all types, not just objects, in order to make
the type-assignment rules simpler. The first three rules
define the familiar rules of class-based inheritance, re-
flexivity (that a type is a subtype of itself) and transitiv-
ity (that a subtype is a subtype of any of its supertypes).
The next three rules extend this notion to sets. The final
two rules define integer subsets as a subtype of int, and
that an integer subset is a subtype of the union between
that subset and another subset. Thus {1,2} <: int, the
purpose of which will be explained shortly.

With all of the pre-requisites in place, we can finally
present the rules of type assignment for expressions:

Rules of Type Assignment: E ` e : T

(Subsum)
E ` e : T
T <: T ′

E ` e : T ′

(Var)
E ` � (v : T) ∈ E

E ` v : T

(Bool Const)
E ` �

E ` b : bool

(Int Const)
E ` �

E ` i : {i}

(Enum Const)
E ` �

E ` u.a : u

(Set)
E ` ei : T ∀i ∈ 1..n

E ` [e1, . . . ,en] : T []

(Eq)
E ` e1 : T
E ` e2 : T

E ` e1 = e2 : bool

(Ineq Op)
⊕ ∈ {>,>=,<,<=}

E ` e1 : int
E ` e2 : int

E ` e1⊕ e2 : bool

(In Op)
E ` e1 : T

E ` e2 : T []

E ` e1 in e2 : bool

(Subset Op)
E ` e1 : T []
E ` e2 : T []

E ` e1 subset e2 : bool

(Logical Op)
⊕ ∈ logical

E ` e1 : bool
E ` e2 : bool

E ` e1⊕ e2 : bool

(Set Op)
⊕ ∈ {union, intersection}
E ` e1 : T [] E ` e2 : T []

E ` e1⊕ e2 : T []

(Int Sub Set Op)
⊕ ∈ {union, intersection}

E ` e1 : S1[]
E ` e2 : S2[]

E ` e1⊕ e2 : (S1⊕S2)[]

(Arith Op Int)
⊕ ∈ arithmetic

E ` e1 : int
E ` e2 : int

E ` e1⊕ e2 : int

(Arith Op Int Sub)
⊕ ∈ arithmetic

E ` e1 : S1 E ` e2 : S2

E ` e1⊕ e2 : {x1⊕ x2 | x1 ∈ S1, x2 ∈ S2}

(Dot)
E ` e : c c <: c′ j ∈ 1..n

class c extends c′ {var li as Ti
i∈1..n }

E ` e.l j : Tj

(This)
E ` �

E ` thisc : c

(Set Card)
E ` e : T []

E ` e.size : int

(Channel)
E ` e : int

E ` int2bool(e) : bool

(Quant)
Q ∈ {forall,exists} E ` e1 : T []

E,v : T ` e2 : bool E,v : T ` e3 : bool
E ` Q v in e1 where e2 (e3) : bool

(Sum)
E ` e1 : T []

E,v : T ` e2 : bool E,v : T ` e3 : int
E ` sum v in e1 where e2 (e3) : int

The first rule is that of subsumption, that an expres-
sion of a type may also take any of its supertypes. This is
followed by variable resolution in the environment, and
boolean integer and enumeration constants. The type of
an integer constant is a singleton set containing the con-
stant’s value. This is significant, because ConfSolve for-
bids sets of integers, thus the set literal [1,2,3] is legal
in ConfSolve, having type {1}∪ {2}∪ {3} = {1,2,3}.
Indeed, it is the reason why the integer literal 1 has type
{1}, and why the type system makes an effort not to pro-
mote to integer subsets to int too readily.

The rules for comparisons (Eq)–(Logical Op) are rel-
atively straightforward, and make heavy use of the sub-
typing rules. For example, recall that S is a subtype of
int and is this subject to the rule (Ineq Op). Likewise,
when we state that both expressions in the equality (Eq)
rule must be of type T , that is not to say that they are of
the same subtype, only that for both types there exists a
common supertype for which they may be substituted.

The set operation (Set Op) follows a similar form, but
(Int Sub Set Op) provides a specialised rule for handling
integer subsets, which applies the intersection or union
operator to the subset itself, as appropriate. The arith-
metic operations (Arith Op Int) and (Arith Op Int Sub)
follow this same pattern, with the latter being somewhat
unusual. Namely, that for arithmetic operations between
integer subsets, the resulting type is the integer subset

containing the result of the application of the operation
to all pairs in the two source subsets. The motivation for
this is the same as for the (Int Const) rule, that the ex-
pression 1+2 has type 3, and thus the set literal [1+2]
is legal.

The next four rules, from (Dot) to (Channel) spec-
ify types for member variable access, the this pseudo-
variable, set cardinality, and channeling integers to
booleans.

The final two rules specify types for quantification and
summation expressions, which are the only rules which
introduce variables into the environment, i.e., the scope
of v is e2 and e3, the where and body clauses, respec-
tively.

In order to provide a succinct notation, the sys-
tem has the following derived properties: if T <:
T ′ then ` T and ` T ′; and if E ` e : T then E ` � and `
T and freevars(e) ⊆ dom(E). That is, that the sub-
type judgement always involves well-formed types, and
that any free variables in an expression are well-formed
members of its environment.

5 ConfSolve and MiniZinc
In this section we provide an overview of the process of
compiling and solving a ConfSolve model, and of the
MiniZinc constraint modelling language.

ConfSolve Compiler

ConfSolve Model

MiniZinc Model

MiniZinc Compiler (mzn2fzn)

FlatZinc Model

CSP Solver (Gecode)

Flat Solution

ConfSolve Post-Processor

ConfSolve Solution (CSON)

Figure 1: Compiling and solving a ConfSolve model.
White boxes are files; shaded boxes are processes.

Compiling and solving a ConfSolve model requires
several steps, which are illustrated in Figure 1; the steps

are as follows:

1. The ConfSolve compiler is invoked; the model is
translated into a CSP expressed in MiniZinc. This
is described in Section 6.

2. The MiniZinc model is compiled into a FlatZinc
model using mzn2fzn [7].

3. The FlatZinc model is solved using a constraint
solver. In our implementation we use Gecode [8].

4. The solution found by the solver is parsed by the
ConfSolve post-processor and combined with the
original model to produce an object-tree (CSON)
representing the solution. This is described in Sec-
tion 6.3.

Implementation Our prototype implementation of the
ConfSolve compiler and post-processor consists of ap-
proximately 1900 lines of F# / OCaml.

5.1 MiniZinc
MiniZinc [7] is a modelling language for constraint pro-
gramming (CP) problems, in which models are speci-
fied as declarative constraints over sets of variables and
domains. MiniZinc models are compiled into FlatZinc,
which is a low-level input format supported by many CP
solvers.

MiniZinc is a form of many-sorted first-order logic.
Variables can be defined with integer, boolean, or set do-
mains; arrays of variables may be declared; constraint
expressions include quantification over sets, and logi-
cal implication. However, MiniZinc is restricted in its
expressibility: sets are limited to bounded integer and
boolean members (no sets of sets), arrays cannot contain
other arrays and must be of fixed size, and quantifica-
tions are restricted to expressions with a constant value
at compile-time. These restrictions arise from the fact
that MiniZinc is designed to be a thin wrapper around
the primitives supported by CP solvers.

Example Let us examine a MiniZinc model generated
by the ConfSolve compiler. This model corresponds to
the four instances of the DatabaseServer class from the
example in Section 2, the relevant ConfSolve model for
which is:

enum DatabaseRole { Master, Slave }

class DatabaseServer extends Role {
var role as DatabaseRole;

// slave or master
var peer as ref DatabaseServer;

// the peer cannot be itself
peer != this;

// a master’s peer must be a slave,
// and a slave’s peer must be a master
role != peer.role;

}

// instances
var masterDB as DatabaseServer;
masterDB.role = DatabaseRole.Master;
masterDB.peer = slaveDB;

var slaveDB as DatabaseServer;
slaveDB.role = DatabaseRole.Slave;
slaveDB.peer = masterDB;

The model begins with variable declarations. As
MiniZinc does not support records or objects, each field
in the DatabaseServer class is declared as a separate ar-
ray, where the number of elements in the array is equal
to the number of DatabaseServer instances in the model,
in this case 4. The domain of the array elements corre-
spond to the type of the field. In the following exam-
ple the DatabaseServer_role has as its domain the con-
tiguous set of integers 1..2, which are indexes into the
DatabaseRole enumeration:

array[1..4] of var 1..2: DatabaseServer_role;
array[1..4] of var 1..4: DatabaseServer_peer;

Constraints are first-order expressions which restrict
the values a variable may take from its domain. Each
is a boolean expression which must evaluate to true. In
this case, the constraints come from the DatabaseServer
class, and so are wrapped with a forall expression
which applies the constraint to all instances of Databas-
eServer, and defines the value of the variable this to
be an index into the field arrays for the DatabaseServer
class. The identifier this has no special meaning in
MiniZinc, and was chosen simply to facilitate transla-
tion:

constraint
forall (this in 1..4) (
DatabaseServer_peer[this] != this
);

constraint
forall (this in 1..4) (
DatabaseServer_role[this] !=
DatabaseServer_role[DatabaseServer_peer[this]]

);

Each MiniZinc model must have a solve goal, which
can be to either minimise or maximise an expression, or
simply satisfy the constraints in the model. In this case
the goal is the latter:

solve satisfy;

Finally, the model must specify which variables val-
ues will be output by the solver. This is useful when
the model includes constants or intermediate variables,
the values of which are not of interest. In this case, it is
simply:

output [
show(DatabaseServer_role),
show(DatabaseServer_peer)
];

5.2 Constraint Satisfaction
The semantics of ConfSolve are defined in terms of
MiniZinc. The specification of a MiniZinc problem
is independent from how it will be solved, therefore
ConfSolve does not make any formal guarantees about
constraint satisfaction, such as the completeness of the
search. Instead it is the solver which defines these prop-
erties.

There are many different approaches to CSP solving
with different performance characteristics and different
formal guarantees. In this paper we make use of the
Gecode [8] solver which performs a global search via the
classic CSP algorithm, constraint propagation. A global
search is complete when variables have finite domains,
but the int type in both ConfSolve and MiniZinc has an
infinite domain. This means that any ConfSolve model
which contains decision variables of type int will result
in an incomplete search. In practice, the CSP solver uses
a bound such as 32 bits for an integer, which is of course
a finite domain, and the search within this range is com-
plete. The Gecode solver which we use has a bound of
32-bits for integers.

The practical implications of search completeness are
straightforward; if we limit ourselves to bounded vari-
ables then solvers exist which guarantee that if there is
a solution, then it will be found. However, there is no
guarantee that we will have enough time or memory to
conclude the search. We evaluate some examples of this
in section 7.

6 Translating ConfSolve to MiniZinc
This section defines the translation from a ConfSolve
model to MiniZinc in terms of their abstract grammars.
The translation occurs in two phases: a counting phase
in which indexes are generated for each object, and an
upper-bound on the number of object instances in the
model is calculated; and a translation phase in which a
MiniZinc abstract syntax tree is constructed.

6.1 Static Allocation
The static allocation phase determines the upper bound
on the number of instances of each class, assigns each
object an index, and records which indices are assigned

to the subclasses of a given class. Its purpose is to gener-
ate the following two data structures, for use in the later
translation phase:

count is a map from a class names c to an integer rep-
resenting the count of the number of instances of c
in the model.

indices is a map from a class name c to a set of integers
representing the indices of each instance of c or one
of its subclasses.

The values of count and indices are updated incremen-
tally as counting progresses via the method described
below. In order to handle inheritance we introduce the
concept of a root class, that is, the topmost class in any
given hierarchy. Formally, root(c) is c when the super-
class of c is ∅, otherwise it is the topmost superclass of
c. The process of counting is as follows:

Given the definition class c extends c′, for each global
declaration var v as T :

when T = c, count(root(c)) is incremented, and its
value is added to the sets indices(c), and to
indices(c∗) for each ancestor c∗ which c extends.
This process is then repeated for each field var v as
T declared in class c or any ancestor of c.

when T = c[n], the case for T = c is repeated n times.

6.2 Translation
The translation describes the process of generating a
MiniZinc abstract syntax tree from a ConfSolve abstract
syntax tree.

We make use of the notation JxK to mean "the transla-
tion of x", where x is some syntactic construct, such as a
type or expression.

Translation of Types JT K:

int , int
bool , bool

{i1, . . . , in}, {i1, . . . , in}
u , 1 .. num(u)

c ,

{ indices(c)} if c is abstract

1 .. count(c) otherwise

c[n], set of JcK
B[], set of JBK

Here we define JT K to be the MiniZinc translation of
a ConfSolve type T , where num(u) is the number of el-
ements in enum u. Each ConfSolve type maps directly
onto a MiniZinc type, with the exception of enumera-
tions and objects which are translated to integer indices.
For set types, the translation is recursive, but only to one

level, because MiniZinc does not permit sets of sets. The
translation process has not yet begun: the translation of
a type is used as an intermediate step in the translations
which follow.

Translation of Global Variable Declarations:

For each global declaration var v as T , introduce a
declaration:

when T = c[n]

JT K : v = {for i ∈ 1..n, index(c)}

when T = c

JT K : v = index(c)

otherwise
var JT K : v

For each global declaration var v as ref c, introduce a
declaration:

var JcK : v

The translation phase proceeds in a similar manner to
the counting phase, and makes use of object indices gen-
erated in exactly the same manner as those in the count
map. It is important that these indices are the same,
so that an index corresponds to the correct value in the
indices map. We define a function index(c) which gener-
ates a new index of class root(c) by counting, and returns
its value.

Translation begins with global variable declarations,
as shown above. When the type of the declared variable
is a set of objects of class c with cardinality n, indices
are generated for each of the n objects. When the type
is a object of class c, a single index is generated. For all
other types no values are assigned, and a var declaration
is introduced.

Reference variable declarations are translated in the
same manner as the “otherwise” case, that is a var dec-
laration is introduced whose domain is the translation of
the c type given in Translation of Types above.

Translation of Class-Level Variable Declarations:

For each ClassDecl defining a class c where
count(c)> 0, containing fields var fi as Ti

i∈1..n,
introduce an array for each field fi:

when Ti = c′[n]

array [1 ..count(c)] of JTiK : c_ fi =

[for i ∈ 1..count(c),
{ for j ∈ 1..n, index(c′) }]

when Ti = c′

array [1 ..count(c)] of JTiK : c_ fi =

[for i ∈ 1..count(c), index(c′)]

otherwise
array [1 ..count(c)] of var JTiK : c_ fi

Where class c contains fields var fi as ref ci
i∈1..n,

introduce an array for each field fi:

array [1 ..count(c)] of var JciK : c_ fi

Variable declarations nested within classes are trans-
lated by introducing an array which will contain the val-
ues of that field for all instances of some class c. When
the type of the declared variable is a set of objects of
class c′ with cardinality n, an array of sets (the only
nested construct permitted by MiniZinc) is declared, and
for each of the count(c) instances, n indices are gener-
ated. When the type is an object of class c′ the decla-
ration is simpler: an array of indices is introduced, one
for each of the count(c) instances. For all other types no
values are assigned, and array of var is introduced.

Once again, reference variable declarations are trans-
lated in the same manner as the “otherwise” case, where
a var declaration is introduced whose domain is the
translation of the type ci.

Translation of Global Constraints:

For each global constraint e, introduce a statement:

constraint JeK

For each global constraint maximize e, update the
objective expression o:

when o is undefined
o = JeK

otherwise
o = o+ JeK

The translation of hard constraints consists of translat-
ing their expressions, which we discuss later. The objec-
tive expression o is the sum of every maximisation goal’s
expression, and is maintained throughout the translation
phase. Each maximize constraint corresponds to a sub-
expression in the objective function.

Translation of Class-Level Constraints:

For each ClassDecl defining a class c where
count(c)> 0, for each constraint e, introduce a
statement:

constraint forall (this in 1 ..count(c)) (JeK)

For each global constraint maximize e, update the
objective expression o:

when o is undefined
o = JeK

otherwise
o = o+ sum (this in 1 ..count(c))(JeK)

Constraints may also be declared at the class-level, in
which case they apply to every instance of that class.
The translation occurs in the same manner as for global
constraints, except that the constraints are placed over
all instances in aggregate via forall for hard constraints
and sum for maximisation constraints.

Translation of Expressions JeK:

v , JvK
this , this
e.l , classof (e)_l[JeK]

u.a , eindex(u,a)

e1 Op e2 , Je1K JOpK Je2K
e.size , card(JeK)

Fold (v in e1 where e2) (e3), (see below)
bool2int(e), bool2int(JeK)

−e ,−JeK
!e , not JeK

[e1, . . . ,en], (see below)
e1 ˆ e2 , Je1K pow Je2K

true , true
false , false

i , i

The MiniZinc translation JeK of a ConfSolve expres-
sion e is given above, where eindex(u,a) is the index
of element a in the declaration enum u {a1 . . .an}, and
classof (e) is the identifier c when the type of e is an ob-
ject of class c. Expressions are translated recursively,
with the exception of literals.

The keyword this is translated into the identifier
“this”, which has no special meaning in MiniZinc. In-
stead, it is simply a quantified variable defined in the
forall expression in the prior Translation of Class-Level
Constraints section.

Translation of Variables JvK:

Within the scope of class c, the translation JvK of a
variable v is:

when v is declared in class c′ ∈ c∗

c′_v[this]

otherwise
v

Variables in expressions are translated in one of two
ways depending on their type. If the variable occurs
within the scope of class c and was declared in c′ which
is either c or one of its ancestors, then the result is a
lookup in the array corresponding to field v of the cur-
rent instance (i.e., this) of class c′. For example, where
c′ is DatabaseServer, and v is “role”, the translation is:

DatabaseServer_role[this]

Otherwise, v is either a global variable or a quanti-
fied variable (from a fold), and translates directly to its
identifier.

Translation of Folds:

The translation of a fold expression Fold (v in e1
where e2) (e3) is given by:

Fold (JvK in r) (b)

where r ,

when e1 is of type c[n]

1 ..count(c)

when e1 is of type u[]

1 ..num(u)

when e1 is of type {i1, . . . , in}[]
{i1, . . . , in}

when e1 is of type bool[]
{true, false}

and b ,

when Fold = sum
bool2int(v in Je1K /\ Je2K) * Je3K

otherwise
v in Je1K /\ Je2K -> (Je3K)

Folds such as foreach translate to a similar construct
in MiniZinc, but one in which the fold must be over a set
of constant value, because the MiniZinc compiler un-
rolls the fold at compile-time. Therefore, the translation
consists of a fold of an expression body b over a constant
range r, which need not be contiguous.

The range r depends on the type of the expression e1,
which the fold is over. When it is a set of objects of type
c, the range is the indices of all c instances. When the
type is an enum, it is the valid indices of the enumera-
tion. When the type is an integer subset the range is that
subset.

Ranges are larger than one might expect. Because
MiniZinc requires that ranges are constant, the range
must contain all values of the relevant type, and we must
correspondingly wrap the body expression e3 with the
implication, v ∈ e1⇒ e3, so that the constraint is placed

over only members of the set in the current solution. In
fact, because ConfSolve also allows a filter expression
e2, this becomes v ∈ e1∧ e2⇒ e3.

The body expression b in fact takes two forms. For a
forall or exists, the logical form just mentioned is used.
For a sum, an arithmetic form is used: bool2int(v ∈
e1 ∧ e2)× e3, where bool2int returns a 0/1 value given
a false/true boolean.

Translation of Binary Operators JBinOpK:

&&, /\

|| , \/

/, div
BinOp′ , BinOp′

Binary operators are directly translated to MiniZinc
operators. BinOp′ denotes all operators not explicitly
listed.
Reduction of Set Literal Expressions:

The reduction of a set literal expression [e1, . . . ,en]
is given by:

In the current scope, insert the declaration:

var set__s as T

Where T is a well-formed type which satisfies the (Set)
typing judgement in section 4 and s is a unique integer.

In the current scope assume the constraint:

constraint e1 in set__s ∧·· ·∧ en in set__s

Finally, the derived expression is:

[e1, . . . ,en], set__s

The translation of set literal expression is defined in
terms of a reduction to a variable and associated con-
straints at the ConfSolve level, which should be per-
formed before any of the other transformation steps pre-
viously listed. This reduction is necessary as it allows
variables to appear inside set literals, which would oth-
erwise not be legal in MiniZinc.
Solve Statement:

when o is undefined
solve satisfy

otherwise
solve maximize o

The translation to MiniZinc concludes with the intro-
duction of a solve statement, the purpose of which is to
provide a criteria for the solver’s search, which may be
either a satisfaction of the constraints, or maximisation
of an objective expression.

6.3 Solutions
After solving, the output of the ConfSolve post-
processor is an object-tree, the syntax of which we refer
to as CSON (ConfSolve Output Notation). A concrete
example of CSON is given in Section 2

To obtain a solution, the translated MiniZinc is com-
piled into FlatZinc and solved using Gecode, which out-
puts assignments for each variable in a simple text-based
format defined by FlatZinc. Generating a CSON tree
from this text is straightforward: the steps of the transla-
tion process are repeated, but whenever a MiniZinc vari-
able would be introduced, we instead read its value from
the output file, and emit the corresponding CSON repre-
sentation:

Syntax of CSON:

V ::= value
i integer
true | false boolean
u.a enum member
c {Member*} object
ref Target object reference
T [n]{V1, . . . ,Vn} set literal

Member ::= member
v : V variable name : value

Target ::= target
v variable
Target.l field access
Target[i] set access

Each CSON value corresponds to a type in ConfSolve.
The solution output consists of a single anonymous ob-
ject representing the global scope. Nested within this
are values for each variable. In the special case of refer-
ences, the value is the fully-qualified name of the target
variable, in which members of sets may be accessed via
index, for example v[i]. f resolves to the value of field f
of the ith element of the set v.

7 Evaluation
Our evaluation of ConfSolve aims to show that the sys-
tem can be used to model a number of diverse configu-
ration problems, and to successfully analyse them. Fur-
thermore, we want to ensure that ConfSolve is able to
perform adequately on large models.

The evaluation was performed on a machine with a
2GHz Intel Core i7 processor and 8GB of RAM, run-
ning Mac OS X version 10.8.1. We used the 64-bit
MiniZinc to FlatZinc converter version 1.5.1 with the
--no-optimize flag, and the 64-bit Gecode FlatZinc in-
terpreter version 3.7.1.

7.1 Virtual Machine Placement
In this evaluation we use ConfSolve to generate an as-
signment of virtual machines to physical machines in an
Infrastructure as a Service (IaaS) configuration. Each
physical machine is identical, having 8 CPUs and 16GB
or memory. Each virtual machine has variables rep-
resenting its requirements on the physical machine re-
sources. These declarations are as follows:

class Machine {
var cpu as int; // 1 unit = 1/2 core
var memory as int; // MB
var disk as int; // GB

cpu = 16; // 2x Quad Core
memory = 16384; // 16 GB
disk = 2048; // 2 TB

}

abstract class VM {
var host as ref Machine;
var disk as int;
var cpu as int;
var memory as int;

}

Virtual machines may be one of two sizes, large and
small. Large machines have 4 CPU units, 3.5GB of
memory, and 500GB of disk. Small machines have 1
CPU unit, 768MB of memory and 20GB of disk:

class SmallVM extends VM {
cpu = 1;
memory = 768;
disk = 20;

}

class LargeVM extends VM {
cpu = 4;
memory = 3584;
disk = 500;

}

The infrastructure consists of two racks of 48 physical
machines, onto which we wish to allocate 350 small and
100 large virtual machines:

// physical machine instances
var rack1 as Machine[48];
var rack2 as Machine[48];

// virtual machine instances
var smallVMs as SmallVM[350];
var largeVMs as LargeVM[100];

We define a constraint on virtual machine placement,
as otherwise there is nothing to prevent every virtual ma-
chine from having the same host:

var machines as ref Machine[96];
var vms as ref VM[450];

forall m in machines {
sum vm in vms where vm.host = m {

vm.cpu;
} <= m.cpu;

sum vm in vms where vm.host = m {
r.memory;

} <= m.memory;

sum vm in vms where vm.host = m {
r.disk;

} <= m.disk;
};

This constraint states that for each physical machine,
the sum of the required quantity of each resource over
all virtual machines hosted on it, must be less than the
quantity of that resource provided by the physical ma-
chine. In other words, that the virtual machines assigned
do not, in aggregate, consume more resources than are
available. This is repeated for the three resources, cpu,
memory, and disk.

From this model, ConfSolve is able to automatically
generate assignments of virtual machines to physical
machines (PMs), by automatically finding values for the
host variable of each VM instance.

The performance achieved when scaling the problem
up to 750 virtual machines is shown in Table 1. The
problem size was increased until the Gecode solver con-
sumed all available free memory on our test machine,
which was 4.5GB.

Problem ConfSolve Cauldron [5]
VM Allocation 4:2 151 1717
VM Allocation 8:2 165 2115
VM Allocation 16:4 177 3995
VM Allocation 17:5 194 -
VM Allocation 100:48 1485 -
VM Allocation 250:48 8288 -
VM Allocation 450:96 44,700 -
VM Allocation 550:96 58,758 -
VM Allocation 650:96 77,174 -
VM Allocation 750:96 94,536 -

Table 1: VM : PM Allocation run-time (milliseconds),
averaged over three runs.

7.2 Cauldron Test Suite
ConfSolve uses a similar object-oriented language to
Cauldron [5] (see Section 8), a policy-based design tool
which is able to describe CIM [9] models. Cauldron is

able to generate solutions to these constraint-based sys-
tem designs; an example of configuring an enterprise
server with physical partitions is provided in [5].

HP Labs kindly provided us with a copy of the Caul-
dron binary (version rel.10c) and a number of sam-
ple problems from their test suite. The example de-
scribed at length in [5] is very much representative in
terms of scope and size, of the examples provided to
us by HP. We translated a representative subset of these
problems into ConfSolve models in order to confirm
that ConfSolve can represent existing constraint-based
configuration models. We then benchmarked the solu-
tion time of these equivalent ConfSolve and Cauldron
models, the results of which can be found in Table 2.
ConfSolve consistently out-performs Cauldron by a fac-
tor of around four on the test hardware described at the
beginning of this section. The build of Cauldron which
we were provided with makes use of a private build of
the VeriFun [10] theorem prover in conjunction with a
custom SAT solver which uses the LazySAT [11] algo-
rithm. Given that Cauldron dates from 2007 and is no
longer under development, more recent SAT solvers may
provide a performance improvement, but Cauldron is a
“black box” and we have no way to determine if this is
the case.

As the Cauldron sample problems are relatively small
in terms of search-space, we translated our large-scale
VM example into an equivalent Cauldron model in or-
der to compare performance at scale. The results in Ta-
ble 1 show that, for this example at least, Cauldron does
not scale to practical problem sizes, failing when only
17 virtual machines are to be allocated to 5 physical ma-
chines. ConfSolve was able to scale to 750 virtual ma-
chines.

Problem ConfSolve Cauldron [5]
Geometry 93 327
Firewall 145 504
QM4 394 2077
ServerComplex7 652 3149
ServerComplex10 875 4254

Table 2: Cauldron test suite run-time (milliseconds), av-
eraged over three runs

8 Related Work
ConfSolve is, to the best of our knowledge, the first
declarative configuration language to target a CSP solver
(Cauldron targets a SAT solver). CSP is well suited to
solving finite combinatorial problems, and branch-and-
bound optimisation, which makes it a natural match for
configuration problems.

Non-declarative policy languages with event-

condition-action (ECA) semantics, such as Ponder,
have been used to describe network configuration
problems [12], however the success of declarative
system configuration tools such as Cfengine [1] has
led to an interest in producing declarative policy tools
for system administrators. Couch & Glifix were early
experimenters with using Prolog for this purpose [13],
followed by Narain [14], and more recently Yin [15].
Couch & Glifix conclude that a declarative language is
essential for producing a convergent policy, due to the
fact that an ECA language would require a policy to
handle every possible failure scenario, but that Prolog is
not a suitable language for system administration.

SAT solvers were used by Narain to solve network
configuration problems [16, 6], via means of the the Al-
loy [17] modelling system and Kodkod [18] SAT-based
relational logic solver. However, in both cases perfor-
mance issues were encountered with the conversion of
their model to SAT, and the difficulty of modelling was
high: writing new predicates required expert knowledge
of their modelling system’s internals.

The Alloy Analyzer [17] is a mature modelling system
which shares some commonality with ConfSolve: both
provide an object-oriented specification language with
logical constraints, and both require the user to specify
an upper-bound on the number of objects in the search
space. The Alloy modelling language is significantly
more general than that of ConfSolve: modelling the dy-
namic properties of a system, i.e. its states, is a key fea-
ture, and its modelling language is necessarily far more
general than ConfSolve, which is concerned only with
the goal state of a system. As a system for model check-
ing and verification, Alloy does not support optimisation
of models, unlike MiniZinc, and in turn ConfSolve. This
makes Alloy unsuitable as a backend for ConfSolve.

A notable SAT-based work is Cauldron [5], an object-
oriented configuration language based on the CIM [9]
model of classes, object references, and arrays, which is
similar to the model adopted by ConfSolve. Solutions
are generated using the VerifFun theorem prover, which
itself relies on a SAT solver. Unfortunately, the Caul-
dron language is not rigorously defined, whether or not
its search is complete is unclear, and its translation to
SAT is not disclosed. Furthermore, its implementation
does not scale well to practically-sized problems, such
as those in Section 7.1.

PoDIM [19] is a framework for the Eiffel language
which allows constraints on objects to be described with
a SQL-like syntax. The language lacks a clear definition
beyond its Eiffel implementation, which does not scale
to problems of practical size.

An extension of the SmartFrog configuration lan-
guage with constraints is hypothesised in [3], though no
detailed work has been published.

s-COMMA [20] is a general-purpose object-oriented
CP language which directly targets Gecode and other CP
solvers, however it does not provide object references,
variable cardinality sets or arrays, or quantification over
decision variables.

Work towards developing ConfSolve is discussed in
the workshop paper [21], which outlines an earlier, less
efficient MiniZinc encoding.

9 Conclusion and Future Work
We have developed an object-oriented system configu-
ration language in which constraints are used to spec-
ify valid configurations. We define its translation to
the standard constraint modelling language MiniZinc,
and find solutions to these models using a state-of-
the-art constraint solver. Writing a complex object-
oriented model in ConfSolve is considerably simpler
than implementing the corresponding problem directly
in MiniZinc. While the scalability of any constraint-
based model is problem-specific, we have shown that
ConfSolve models are able to scale to problems of a
practical size using a common use-case.

While ConfSolve allows the user to model and anal-
yse systems, it does not replace existing declarative con-
figuration systems such as Cfengine or Puppet, but in-
stead provides a platform which in the future could be
used to augment existing languages, construct new tools
which suggest solutions to specific problems, or perform
impact analyses of proposed configuration changes.

It is possible to solve constraint problems at very large
scale by performing a local search, which only explores
a subset of the search-space, but can solve constraint
problems many orders of magnitude larger. Local-search
solvers such as [22] may soon support modelling with
MiniZinc-like expressivity, which would allow them to
be readily targeted by ConfSolve.

Implementation The ConfSolve compiler (v0.6) is
written in F# / OCaml and is available for download at
http://homepages.inf.ed.ac.uk/s0968244/confsolve

Acknowledgements.
Thanks to Sharad Singhal at HP Labs for providing
the Cauldron test suite and binaries. This work was
funded by Microsoft Research through their European
PhD Scholarship Programme.

References
[1] Burgess, M.: Cfengine: a site configuration en-

gine. USENIX Computing systems 8(3) (1995)
309–402

[2] Puppet Labs: Puppet (2008) Available from http:
//www.puppetlabs.com/puppet/.

http://homepages.inf.ed.ac.uk/s0968244/confsolve
http://www.puppetlabs.com/puppet/
http://www.puppetlabs.com/puppet/

[3] Goldsack, P., Guijarro, J., Loughran, S., Coles, A.,
Farrell, A., Lain, A., Murray, P., Toft, P.: The
SmartFrog configuration management framework.
SIGOPS Operating Systems Review 43 (January
2009) 16–25

[4] Oppenheimer, D., Ganapathi, A., Patterson, D.:
Why do Internet services fail, and what can be done
about it? In: 4th USENIX Symposium on Internet
Technologies and Systems, USENIX Association
(2003)

[5] Ramshaw, L., Sahai, A., Saxe, J., Singhal, S.:
Cauldron: A policy-based design tool. In: 7th
IEEE International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY 2006),
IEEE Computer Society (2006) 113–122

[6] Narain, S., Levin, G., Malik, S., Kaul, V.: Declar-
ative infrastructure configuration synthesis and de-
bugging. Journal of Network and Systems Man-
agement 16(3) (2008) 235–258

[7] Nethercote, N., Stuckey, P., Becket, R., Brand,
S., Duck, G., Tack, G.: MiniZinc: Towards a
standard CP modelling language. In: 13th In-
ternational Conference on Principles and Practice
of Constraint Programming (CP 2007), Springer
(2007) 529–543

[8] Gecode Team: Gecode: Genetic constraint devel-
opment environment (2006) Available from http:
//www.gecode.org.

[9] Distributed Management Task Force
Inc.: Common information model
(CIM) standards (2010) Available from
http://www.dmtf.org/standards/cim/.

[10] Walther, C., Schweitzer, S.: About VeriFun.
In: Proceedings of the 19th International Confer-
ence on Automated Deduction (CADE-19). Vol-
ume 2741 of Lecture Notes in Computer Science.,
Springer (2003) 322–327

[11] Singla, P., Domingos, P.: Memory-efficient infer-
ence in relational domains. In: Proceedings of the
21st national conference on Artificial intelligence.
Volume 1 of AAAI’06., AAAI Press (2006) 488–
493

[12] Damianou, N., Dulay, N., Lupu, E., Sloman, M.:
The Ponder policy specification language. In: Pro-
ceedings of the IEEE Workshop on Policies for
Distributed Systems and Networks (POLICY ’01).
(2001) 18–38

[13] Couch, A., Gilfix, M.: It’s elementary, dear Wat-
son: applying logic programming to convergent
system management processes. In: Proceedings of
the 13th conference on Large Installation System

Administration (LISA ’99), USENIX Association
(1999)

[14] Narain, S., Cheng, T., Coan, B., Kaul, V.,
Parmeswaran, K., Stephens, W.: Building auto-
nomic systems via configuration. In: Proceedings
of IEEE Autonomic Computing Workshop. (2003)

[15] Yin, Q., Cappos, J., Baumann, A., Roscoe, T.:
Dependable self-hosting distributed systems using
constraints. In: Proceedings of the Fourth Con-
ference on Hot Topics in System Dependability,
USENIX Association (2008) 11–11

[16] Narain, S.: Network configuration management
via model finding. In: Proceedings of the 19th
conference on Large Installation System Admin-
istration (LISA ’05), USENIX Association (2005)
15

[17] Jackson, D.: Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 11(2) (2002)
256–290

[18] Torlak, E., Jackson, D.: Kodkod: A relational
model finder. Tools and Algorithms for the Con-
struction and Analysis of Systems (2007) 632–647

[19] Delaet, T., Joosen, W.: PoDIM: A language for
high-level configuration management. In: Pro-
ceedings of the 21st conference on Large Installa-
tion System Administration (LISA ’07), USENIX
Association (2007)

[20] Soto, R., Granvilliers, L.: On the pursuit of a stan-
dard language for object-oriented constraint mod-
eling. (2008) 123–133

[21] Hewson, J., Anderson, P.: Modelling system
administration problems with CSPs. In: Pro-
ceedings of the 10th International Workshop on
Constraint Modelling and Reformulation (Mod-
Ref’11). (2011) 73–82

[22] Benoist, T., Estellon, B., Gardi, F., Megel, R.,
Nouioua, K.: Localsolver 1.x: a black-box local-
search solver for 0-1 programming. 4OR: A Quar-
terly Journal of Operations Research (2011) 1–18

http://www.gecode.org
http://www.gecode.org
http://www.dmtf.org/standards/cim/

	Introduction
	Modelling with ConfSolve
	Core Syntax of ConfSolve
	Derived Syntax

	Type System
	ConfSolve and MiniZinc
	MiniZinc
	Constraint Satisfaction

	Translating ConfSolve to MiniZinc
	Static Allocation
	Translation
	Solutions

	Evaluation
	Virtual Machine Placement
	Cauldron Test Suite

	Related Work
	Conclusion and Future Work

